Maximizing Voronoi Regions of a Set of Points Enclosed in a Circle with Applications to Facility Location

نویسنده

  • Bhaswar B. Bhattacharya
چکیده

In this paper we introduce an optimization problem, which involves maximization of the area of Voronoi regions of a set of points placed inside a circle. Such optimization goals arise in facility location problems consisting of both mobile and stationary facilities. Let ψ be a circular path through which mobile service stations are plying, and S be a set of n stationary facilities (points) inside ψ. A demand point p is served from a mobile facility plying along the circumference of ψ if the distance of p from the boundary of ψ is less than that from any member in S. On the other hand, the demand point p is served from a particular member pi ∈ S if it is closer to pi than from all other members in S and also from the boundary of ψ. The objective is to place the stationary facilities in S, inside ψ, such that the total area served by them is maximized. We consider a restricted version of this problem where the members in S are placed equidistantly from the center o of ψ. It is shown that the maximum area is obtained when the members in S lie on the vertices of a regular n-gon, with its circumcenter at o. The distance of the members in S from o and the optimum area increases with n, and at the limit approaches the radius and the area of the circle ψ, respectively. We also consider another variation of this problem where a set of n points is placed inside ψ, and the task is to locate a new point q inside ψ such that the area of the Voronoi region of q is maximized. We give an exact solution of this problem when n = 1 and a (1−ε)-approximation algorithm for the general case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the facility location problem: One-round weighted Voronoi game

Voronoi game presents a simple geometric model for Competitive facility location problems with two players. Voronoi game is played by two players known as White and Black, they play in a continuous arena. In the one-round game, White starts game and places all his points in the arena then Black places her points. Then the arena is divided by distance between two players and the player with the ...

متن کامل

Near Pole Polar Diagram of Points and its Duality with Applications

In this paper we propose a new approach to plane partitioning with similar features to those of Polar Diagram, but we assume that the pole is close to the sites. The result is a new tessellation of the plane in regions called Near Pole Polar Diagram NPPD. Here we define the (NPPD) of points, the dual and the Contracted dual of it, present an optimal algorithms to draw them and discuss the appli...

متن کامل

Optimal Capacities in Discrete Facility Location Design Problem

Network location models comprise one of the main categories of location models. These models have various applications in regional and urban planning as well as in transportation, distribution, and energy management. In a network location problem, nodes represent demand points and candidate locations to locate the facilities. If the links network is unchangeably determined, the problem will be ...

متن کامل

Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry

Presented in this paper are algorithms to compute the positions of vertices and equations of edges of the Voronoi diagram of a circle set on a plane, where the radii of the circles are not necessarily equal and the circles are not necessarily disjoint. The algorithms correctly and efficiently work in conjunction with the first paper of the series dealing with the construction of the correct top...

متن کامل

On the Hausdorff and Other Cluster Voronoi Diagrams

The Voronoi diagram is a fundamental geometric structure that encodes proximity information. Given a set of geometric objects, called sites, their Voronoi diagram is a subdivision of the underlying space into maximal regions, such that all points within one region have the same nearest site. Problems in diverse application domains (such as VLSI CAD, robotics, facility location, etc.) demand var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Math. Model. Algorithms

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2010